Abstract

With the use of polarization-transfer pulse sequences and hyperpolarized (129)Xe NMR, gas exchange in the lung can be measured quantitatively. However, harnessing the inherently high sensitivity of this technique as a tool for exploring lung function requires a fundamental understanding of the xenon gas-exchange and diffusion processes in the lung, and how these may differ between healthy and pathological conditions. Toward this goal, we employed NMR spectroscopy and imaging techniques in animal models to investigate the dependence of the relative xenon gas exchange rate on the inflation level of the lung and the tissue density. The spectroscopic results indicate that gas exchange occurs on a time scale of milliseconds, with an average effective diffusion constant of about 3.3 x 10(-6)cm(2)/s in the lung parenchyma. Polarization-transfer imaging pulse sequences, which were optimized based on the spectroscopic results, detected regionally increased gas-exchange rates in the lung, indicative of increased tissue density secondary to gravitational compression. By exploiting the gas-exchange process in the lung to encode physiologic parameters, these methods may be extended to noninvasive regional assessments of lung-tissue density and the alveolar surface-to-volume ratio, and allow lung pathology to be detected at an earlier stage than is currently possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.