Abstract
ObjectiveThis paper aims to investigate the key factors, including demographics, socioeconomics, physical well-being, lifestyle, daily activities and loneliness that can impact depressive symptoms in the middle-aged and elderly population using machine learning techniques. By identifying the most important predictors of depressive symptoms through the analysis, the findings can have important implications for early depression detection and intervention. ParticipantsFor our cross-sectional study, we recruited a total of 976 volunteers, with a specific focus on individuals aged 50 and above. Each participant was requested to provide their demographic, socioeconomic information and undergo several physical health tests. Additionally, they were asked to respond to questionnaires that assessed their mental well-being. Furthermore, participants were requested to maintain an activity log for a continuous 14-day period, starting from the day after they signed up. They had the option to use either a provided mobile application or paper to record their activities. MethodsWe evaluated multiple machine learning models to find the best-performing one. Subsequently, we conducted post-hoc analysis to extract the variable significance from the selected model to gain deeper insights into the factors influencing depression. ResultsLogistic Regression was chosen as it exhibited superior performance across other models, with AUC of 0.807 ± 0.038, accuracy of 0.798 ± 0.048, specificity of 0.795 ± 0.061, sensitivity of 0.819 ± 0.097, NPV of 0.972 ± 0.013 and PPV of 0.359 ± 0.064. The top influential predictors identified in the model included loneliness, health indicator (i.e. frailty, eyesight, functional mobility), time spent on activities (i.e. staying home, doing exercises and visiting friends) and perceived income adequacy. ConclusionThese findings have the potential to identify individuals at risk of depression and prioritize interventions based on the influential factors. The amount of time dedicated to daily activities emerges as a significant indicator of depression risk among middle-aged and elderly individuals, along with loneliness, physical health indicators and perceived income adequacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.