Abstract

The effective performance of wide-issue superscalar processors depends on many parameters, such as branch prediction accuracy, available instruction-level parallelism, and instruction-fetch bandwidth. This paper explores the relations between some of these parameters, and more particularly, the requirement in instruction-fetch bandwidth. We introduce new enhancements to boost effectively the instruction-fetch bandwidth of conventional fetch engines. However, experiments strongly show that performance improves less for a given instruction-fetch bandwidth gain as the base fetch bandwidth increases. At the level of bandwidth exhibited by the proposed schemes, the performance improvement is small. This clearly brings to light potential relations between the fetch bandwidth and the other parameters. We provide a model to explain this behaviour and quantify some relations. Based on the experimental observation that the available parallelism in an instruction window of size N grows as the square root /spl radic/N, we derive from the model that the instruction fetch bandwidth requirement increases as the square root of the distance between mispredicted branches. We also show that the instruction fetch bandwidth requirement increases linearly with the parallelism available in a fixed-size instruction window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.