Abstract

AbstractPlanar perovskite solar cells obtained by low‐temperature solution processing are of great promise, given a high compatibility with flexible substrates and perovskite‐based tandem devices, whilst benefitting from relatively simple manufacturing methods. However, ionic defects at surfaces usually cause detrimental carrier recombination, which links to one of dominant losses in device performance, slow transient responses, and notorious hysteresis. Here, it is shown that several different types of ionic defects can be simultaneously passivated by simple inorganic binary alkaline halide salts with their cations and anions. Compared to previous literature reports, this work demonstrates a promising passivation technology for perovskite solar cells. The efficient defect passivation significantly suppresses the recombination at the SnO2/perovskite interface, contributing to an increase in the open‐circuit voltage, the fast response of steady‐state efficiency, and the elimination of hysteresis. By this strong leveraging of multiple‐element passivation, low‐temperature‐processed, planar‐structured perovskite solar cells of 20.5% efficiencies, having negligible hysteresis, are obtained. Moreover, this defect‐passivation enhances the stability of solar cells with efficiency beyond 20%, retaining 90% of their initial performance after 30 d. This approach aims at developing the concept of defect engineering, which can be expanded to multiple‐element passivation from monoelement counterparts using simple and low‐cost inorganic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call