Abstract

This study used model pile load testing and numerical analysis to investigate the experimental analysis results of pile and soil responses for lateral load testing due to the flexural yielding of a pile, and to examine the applicability of the distributed plastic hinge model to the numerical simulation of inelastic pile response. A lateral load test on an aluminum model pile in sand was conducted as an analysis case. The pile was loaded to a large lateral pile-head displacement, a displacement under which some of the pile sections yielded and thus the pile had inelastic flexural deformation. The test results showed that before the pile yielded, the depth of maximum moment increased with increasing load due to soil nonlinearity; after the pile yielded, the depth of maximum moment varied less and the plastic region expanded upward and downward around this depth with increasing pile displacement. In deducing the responses of the pile and soil for the pile-soil system, the actual nonlinear flexural rigidity of the pile section built based on the bending test was essential to retrieve rational ones. In addition, the distributed plastic hinge model was shown to be effective to model the inelastic pile responses and capture the development of plastic zones in the pile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call