Abstract
The crystallization has significant influence on fluidity of slag and slag discharge of entrained-flow-bed (EFB) gasifier. The crystallization characteristics and fluidity of five synthetic slags with different MgO/CaO ratios prepared on the basis of the range of oxide contents of Zhundong coal ash were investigated in this study. The results show that with the MgO/CaO ratio increase, the initial crystallization temperature increases, and the main temperature range of crystallization ratio growth moves to higher temperature range gradually which causes Tp25 (Tp25 is the temperature corresponding to the viscosity of 25 Pa·s) to increase. Mg-rich crystals are formed preferentially than Ca-rich crystals when adding the same amount of MgO and CaO during cooling. The effective slagging operating temperature range decrease from 217 °C for the slag with a 0:4 MgO/CaO ratio to 44 °C for the slag with a 4:0 MgO/CaO ratio with the MgO/CaO ratio increase. The slags with 2:2 and 1:3 MgO/CaO ratios show similar effective slagging operating temperature range, Tp25 and the temperature corresponding to the viscosity of 2 Pa·s. However, compared with the slag with a 1:3 MgO/CaO ratio, the crystallization ratio and rate of slag with a 2:2 MgO/CaO ratio are lower within lower temperature range (1300–1200 °C), causing its lower critical viscosity temperature and wider actual operating temperature range. Of the five slags, the widest effective slagging operating temperature range and the lowest Tp25 of the slag with a 0:4 MgO/CaO ratio due to its low crystallization ratio, and wider actual operating temperature range of the slag with a 2:2 MgO/CaO ratio make the two slags suitable for slag discharge of EFB gasifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.