Abstract

Background: Breast cancer treatment sometimes causes a chronic swelling of the arm called breast cancer-related lymphedema (BCRL). Its progression is believed to be irreversible and is accompanied by tissue fibrosis and lipidosis, so preventing lymphedema from progressing by appropriate intervention at the site of fluid accumulation at an early stage is crucial. The tissue structure can be evaluated in real time by ultrasonography, and this study aims at assessing the ability of fractal analysis using virtual volume in detecting fluid accumulation within BCRL subcutaneous tissue via ultrasound imaging. Methods and Results: We worked with 21 women who developed BCRL (International Society of Lymphology stage II) after unilateral breast cancer treatment. Their subcutaneous tissues were scanned with an ultrasound system (Sonosite Edge II; Sonosite, Inc., FUJIFILM) using a 6- to 15-MHz linear transducer. Then, a 3-Tesla MR system was used to confirm fluid accumulation in the corresponding area of the ultrasound system. Significant differences in both H + 2 and complexity were observed among the three groups (with hyperintense area, without hyperintense area, and unaffected side) (p < 0.05). Post hoc analysis (Mann-Whitney U test; Bonferroni correction p < 0.0167) revealed a significant difference for "complexity." The evaluation of the distribution in Euclidean space showed that the variation of the distribution decreased in the order of unaffected, without hyperintense area, and with hyperintense area. Conclusion: The "complexity" of the fractal using virtual volume seems to be an effective indicator of the presence or absence of subcutaneous tissue fluid accumulation in BCRL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.