Abstract
Great progress has been made in the development of whole sporozoite vaccines including the manufacturing of cryopreserved Plasmodium falciparum sporozoites (PfSPZ) suitable for clinical application. Such whole sporozoites are being used for clinical studies of controlled human malaria infection (CHMI) as well as for evaluation of candidate vaccine approaches (both attenuated sporozoites and infectious sporozoites administered with chemoprophylaxis) and as reagents for immunology and cell biology assays. CHMI studies with whole sporozoites provide a great opportunity to better understand the intrinsic mechanisms of resistance to P. falciparum (e.g. due to sickle cell trait and other hemoglobinopathies) as well as host responses to an initial P. falciparum infection. High-level protective efficacy has been demonstrated in a small number of volunteers after intravenous (IV) inoculation of radiation-attenuated PfSPZ or in those who were exposed to live PfSPZ while on malaria chemoprophylaxis. These advances and data warrant further investigations of the immunological mechanism(s) whereby whole sporozoite inoculation elicits protective immunity in order to facilitate whole sporozoite vaccine development. The National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on Sept. 2–3, 2014 involving participation of international experts in the field of malaria vaccine development, and in basic and clinical immunology research. The workshop discussed the current understanding of host immune responses to whole malaria sporozoite inoculation, identified gaps in knowledge, resources to facilitate progress, and applicable new technologies and approaches to accelerate immunologic and vaccinologic studies and biomarker identification. This report summarizes the discussions and major conclusions from the workshop participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.