Abstract

Atrial fibrillation (AF) and related cardiovascular complications pose a heavy burden to patients and society. Mounting evidence suggests a close association between nonalcoholic fatty liver disease (NAFLD) and AF. NAFLD and AF transcriptomic datasets were obtained from GEO database and analyzed using several bioinformatics approaches. We established a NAFLD-AF associated gene diagnostic signature (NAGDS) using protein–protein interaction analysis and machine learning, which was further quantified through RT-qPCR. Potential miRNA targeting NAGDS were predicted. Gene modules highly correlated with NAFLD liver pathology or AF occurrence were identified by WGCNA. Enrichment analysis of the overlapped genes from key module revealed that T-cell activation plays essential roles in NAFLD and AF, which was further confirmed by immune infiltration. Furthermore, an integrated SVM-RFE and LASSO algorithm was used to identify CCL4, CD48, ITGB2, and RNASE6 as NAGDS, all of which were found to be upregulated in NAFLD and AF mouse tissues. Patients with higher NAGDS showed augmented T cell and macrophage immunity, more advanced liver pathological characteristics, and prolonged AF duration. Additionally, hsa-miR-26a-5p played a central role in the regulation of NAGDS. Our findings highlight the central role of T-cell immune response in linking NAFLD to AF, and established an accurate NAGDS diagnostic model, which could serve as potential targets for immunoregulatory therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.