Abstract

The dynamic form of the double square-root (DSR) equation provides a mechanism to extrapolate prestack wavefields by moving the sources and receivers in space with respect to a potential image (scatterer) point. Its classical implementation for imaging often assumes sources and receivers are at the same horizontal surface. Reverse time migration (RTM), as well as common shot migrations in general, through its separate treatment of the sources and receivers, allows for more exibility in source and receiver configurations. A simple modication to the classical DSR equation provides such exibility. Specically, we define a 7-dimensional prestack wavefield for 3-D media that includes the vertical source and receiver offset. The corresponding dispersion relation can be used to extrapolate such wavefields. However, the cost for such a definition and extrapolation can be prohibitive, considering the high dimensionality of the problem. We reduce the dimensionality by recognizing that the sources and receivers often share the same horizontal plane, and thus, obtain the conventional DSR formulation. An efficient implementation of DSR in time yields extrapolation speeds that nominally exceed those obtained from reverse time migration. We can also reduce the dimensionality by setting the horizontal offset between the source and receiver at the image point to zero, or using a DSR-like formulation to correct for source-receiver vertical offset or topography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.