Abstract

The ice stored in caves is a widespread yet neglected cryospheric component. The cold-adapted biodiversity of ice caves has received very little attention from research, despite the potential abundance of endemic troglobiotic and cryophilic species and their consequent sensitivity to the changing climate. In this study, we investigated the invertebrate diversity of two ice caves in Northeastern Italy (Bus delle Taccole and Caverna del Sieson, Veneto Region). During 2022 and 2023, we sampled, using pitfall traps, the invertebrates dwelling at different locations in each cave: the shaft base, an intermediate hall, and the cave bottom. At each cave location, we also collected ice samples, on which we measured the stable isotopes of oxygen and hydrogen (δ18O, δ2H), and monitored the air temperature with data-loggers. The two caves had different invertebrate communities, both dominated by a combination of troglobiotic and cryophilic taxa. Despite a low taxonomic richness, which was higher at Taccole (15 taxa) than at Sieson (11 taxa), both caves hosted rare/endemic species, four of which are not described yet. At each cave, the ice water isotopic signatures differed among cave locations, suggesting the ice had formed under different climatic conditions, and/or resulted from different frequencies of thawing/freezing events. The occurrence of summer melt at both caves suggests that these unique ecosystems will quickly disappear, along with their specialized and unique biodiversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call