Abstract

Precise pointer analysis is a problem of interest to both the compiler and the program verification community. Flow-sensitivity is an important dimension of pointer analysis that affects the precision of the final result computed. Scaling flow-sensitive pointer analysis to millions of lines of code is a major challenge. Recently, staged flow-sensitive pointer analysis has been proposed, which exploits a sparse representation of program code created by staged analysis. In this paper we formulate the staged flow-sensitive pointer analysis as a graph-rewriting problem. Graph-rewriting has already been used for flow-insensitive analysis. However, formulating flow-sensitive pointer analysis as a graph-rewriting problem adds additional challenges due to the nature of flow-sensitivity. We implement our parallel algorithm using Intel Threading Building Blocks and demonstrate considerable scaling (upto 2.6x) for 8 threads on a set of 10 benchmarks. Compared to the sequential implementation of staged flow-sensitive analysis, a single threaded execution of our implementation performs better in 8 of the benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.