Abstract

Inspired by the ideas from the fields of gait rehabilitation, neuroscience, and locomotion biomechanics and energetics, a body of work is reviewed that has led to propose a conceptual framework for novel "self-assistive" walking devices that could further promote walking recovery from incomplete spinal cord injuries. The underlying rationale is based on a neural coupling mechanism that governs the coordinated movements of the arms and legs during walking, and that the excitability of these neural pathways can be exploited by actively engaging the arms during locomotor training. Self-assistive treadmill walking rehabilitation devices are envisioned as an approach that would allow an individual to actively use their arms to help the legs during walking. It is hoped that the conceptual framework inspires the design and use of self-assistive walking devices that are tailored to assist individuals with an incomplete spinal cord injury to regain their functional walking ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.