Abstract

This work presents a study on the effects of periodic boundary conditions (PBC) on the energetic/structural properties and hydrogen bond dynamics (HB) using molecular dynamics (MD) simulations of peptide membranes composed of alanine and histidine. Our results highlight that simulations using small surface areas for the peptide membrane may result in nonconvergent values for membrane properties, which are only observed in regions simulated at a certain distance from the PBCs. Specifically, regarding hydrogen bonds, a property pervasive in peptide membranes, our findings indicate a significant increase in the lifetime of these interactions, reaching values ∼19% higher when observed in structures free from PBCs. For peptide mobility in these nanomembranes, our results compare regions simulated directly under the influence of PBCs with regions free from these conditions, emphasizing greater mobility of amino acid psi/phi angles in the latter model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call