Abstract

Histopathology image analysis is widely accepted as a gold standard for cancer diagnosis. The Cancer Genome Atlas (TCGA) contains large repositories of histopathology whole slide images spanning several organs and subtypes. However, not much work has gone into analyzing all the organs and subtypes and their similarities. Our work attempts to bridge this gap by training deep learning models to classify cancer vs. normal patches for 11 subtypes spanning seven organs (9,792 tissue slides) to achieve high classification performance. We used these models to investigate their performances in the test set of other organs (cross-organ inference). We found that every model had a good cross-organ inference accuracy when tested on breast, colorectal, and liver cancers. Further, high accuracy is observed between models trained on the cancer subtypes originating from the same organ (kidney and lung). We also validated these performances by showing the separability of cancer and normal samples in a high-dimensional feature space. We further hypothesized that the high cross-organ inferences are due to shared tumor morphologies among organs. We validated the hypothesis by showing the overlap in the Gradient-weighted Class Activation Mapping (GradCAM) visualizations and similarities in the distributions of nuclei features present within the high-attention regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.