Abstract
As a critical infrastructure of cloud computing, data center networks (DCNs) directly determine the service performance of data centers, which provide computing services for various applications such as big data processing and artificial intelligence. However, current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers, which is hard to satisfy the requirements of high-performance data center networks. Based on dual-port servers and Clos network structure, this paper proposed a novel architecture to construct high-performance data center networks. Logically, the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches, where switches are connected in the form of a ring Clos structure. We describe the structural properties of in terms of network scale, bisection bandwidth, and network diameter. architecture inherits characteristics of its embedded Clos network, which can accommodate a large number of servers with a small average path length. The proposed architecture embraces a high fault tolerance, which adapts to the construction of various data center networks. For example, the average path length between servers is 3.44, and the standardized bisection bandwidth is 0.8 in (32, 5). The result of numerical experiments shows that enjoys a small average path length and a high network fault tolerance, which is essential in the construction of high-performance data center networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.