Abstract

In pursuit of detecting dark matter signals, the Large Hadron Collider (LHC) at CERN has conducted proton-proton collisions to probe for these elusive particles, whose existence has been supported by astronomical observations. Despite extensive efforts by the CMS and ATLAS experiments, the direct detection of dark matter signals remains elusive. The current approaches employed for analyzing dark matter signatures utilize the cut-and-count method based on conventional techniques. This study introduces an alternative method for exploring dark matter signatures by utilizing fine-tuning of pre-trained models, such as ResNet-50, on 2D histograms generated from a combination of signal + background samples and background-only samples. By utilizing various signal-to-background ratios as benchmarks, an accuracy of about 90% for a signal-to-background ratio of 0.008 is achieved. This approach not only offers a more refined search for dark matter signals but also presents an efficient and effective means of analysis using machine learning techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.