Abstract

Convolutional neural network (CNN) finds applications in a variety of computer vision applications ranging from object recognition and detection to scene understanding owing to its exceptional accuracy. There exist different algorithms for CNNs computation. In this paper, we explore conventional convolution algorithm with a faster algorithm using Winograd's minimal filtering theory for efficient FPGA implementation. Distinct from the conventional convolution algorithm, Winograd algorithm uses less computing resources but puts more pressure on the memory bandwidth. We first propose a fusion architecture that can fuse multiple layers naturally in CNNs, reusing the intermediate data. Based on this fusion architecture, we explore heterogeneous algorithms to maximize the throughput of a CNN. We design an optimal algorithm to determine the fusion and algorithm strategy for each layer. We also develop an automated toolchain to ease the mapping from Caffe model to FPGA bitstream using Vivado HLS. Experiments using widely used VGG and AlexNet demonstrate that our design achieves up to 1.99X performance speedup compared to the prior fusion-based FPGA accelerator for CNNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.