Abstract

Using machine learning techniques, we introduce a Markov state model (MSM) for a model glass former that reveals structural heterogeneities and their slow dynamics by coarse-graining the molecular dynamics into a low-dimensional feature space. The transition timescale between states is larger than the conventional structural relaxation time τ_{α}, but can be obtained from trajectories much shorter than τ_{α}. The learned map of states assigned to the particles corresponds to local excess Voronoi volume. These results resonate with classic free volume theories of the glass transition, singling out local packing fluctuations as one of the dominant slowly relaxing features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call