Abstract
To investigate the genetic diversity and understand the process of horizontal gene transfer (HGT) in nodule bacteria associated with Lotus japonicus, we analyzed sequences of three housekeeping and five symbiotic genes using samples from a geographically wide range in Japan. A phylogenetic analysis of the housekeeping genes indicated that L. japonicus in natural environments was associated with diverse lineages of Mesorhizobium spp., whereas the sequences of symbiotic genes were highly similar between strains, resulting in remarkably low nucleotide diversity at both synonymous and nonsynonymous sites. Guanine-cytosine content values were lower in symbiotic genes, and relative frequencies of recombination between symbiotic genes were also lower than those between housekeeping genes. An analysis of molecular variance showed significant genetic differentiation among populations in both symbiotic and housekeeping genes. These results confirm that the Mesorhizobium genes required for symbiosis with L. japonicus behave as a genomic island (i.e., a symbiosis island) and suggest that this island has spread into diverse genomic backgrounds of Mesorhizobium via HGT events in natural environments. Furthermore, our data compilation revealed that the genetic diversity of symbiotic genes in L. japonicus-associated symbionts was among the lowest compared with reports of other species, which may be related to the recent population expansion proposed in Japanese populations of L. japonicus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.