Abstract
Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams.
Highlights
The National Basketball Association (NBA) from the United States of America is the most competitive basketball league in the world, with a competition period in regular season comprising 82 games spanning approximately 24 weeks
Game-related statistics can provide insight on both perception and action of the players. They may provide a measure of co-adaptation, in the way that players function as part of a larger system co-adapting to small but important changes in each others structure and function [5]
The variables analyzed included the points per game, minutes played and the following game actions, as defined by the NBA and the company responsible for the player tracking process (SportsVU, Northbrook, IL, USA):
Summary
The National Basketball Association (NBA) from the United States of America is the most competitive basketball league in the world, with a competition period in regular season comprising 82 games spanning approximately 24 weeks. The coaching staff must prepare and oversee the training loads on players throughout the entirety of the competition period, a complex process that places a great amount of physiological stress on the athletes [1] This process requires managing the significant differences in work demands introduced by position-specific game behaviors and player status (e.g., starting vs non-starting players), as well as adjusting throughout the season to several changing unpredictable constraints such as player injuries. One of the most common methods of monitoring sports performance is using game-related statistics to evaluate technical and tactical behavior, as well as the efficiency of players and teams throughout the season. Research reporting these variables frequently uses data from European league games but not from the NBA. They may provide a measure of co-adaptation, in the way that players function as part of a larger system (the team) co-adapting to small but important changes in each others structure and function [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.