Abstract
The full potential energy surface of the catalytic conversion of furfural to 2-methylfuran on the Cu(111) surface has been systematically computed on the basis of density functional theory, including dispersion and zero-point energy corrections. For furfuryl alcohol formation, the more favorable step is the first H addition to the carbon atom of the C═O group, forming an alkoxyl intermediate (F-CHO +H → F-CH2O); the second H atom addition, leading to furfuryl alcohol formation (F-CH2O + H → F-CH2OH), is the rate-determining step. For 2-methylfuran formation from furfuryl alcohol dissociation into surface alkyl (F-CH2) and OH groups, H2O formation is the rate-determining step (OH + H → H2O). Our results explain perfectly the experimentally observed selective formation of furfuryl alcohol and the equilibrium of furfural/furfuryl alcohol conversion under hydrogen-rich conditions as well as the effect of H2O suppressing furfural conversion. In addition, it is found that dispersion correction (PBE-D3) overesti...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.