Abstract
The evolution of proteins is one of the fundamental processes that has delivered the diversity and complexity of life we see around ourselves today. While we tend to define protein evolution in terms of sequence level mutations, insertions and deletions, it is hard to translate these processes to a more complete picture incorporating a polypeptide's structure and function. By considering how protein structures change over time we can gain an entirely new appreciation of their long-term evolutionary dynamics. In this work we seek to identify how populations of proteins at different stages of evolution explore their possible structure space. We use an annotation of superfamily age to this space and explore the relationship between these ages and a diverse set of properties pertaining to a superfamily's sequence, structure and function. We note several marked differences between the populations of newly evolved and ancient structures, such as in their length distributions, secondary structure content and tertiary packing arrangements. In particular, many of these differences suggest a less elaborate structure for newly evolved superfamilies when compared with their ancient counterparts. We show that the structural preferences we report are not a residual effect of a more fundamental relationship with function. Furthermore, we demonstrate the robustness of our results, using significant variation in the algorithm used to estimate the ages. We present these age estimates as a useful tool to analyse protein populations. In particularly, we apply this in a comparison of domains containing greek key or jelly roll motifs.
Highlights
The current wealth of freely available genetic sequences offers the potential to uncover the evolutionary history of genes and their products, proteins
Proteins are the molecular workers of the cell. They are formed from a string of amino acids which folds into an elaborate three-dimensional structure
We have demonstrated here how these ages can be used to compare particular structural motifs present in a large number of protein structures and have shown that the jelly roll motif is significantly younger than the greek key
Summary
The current wealth of freely available genetic sequences offers the potential to uncover the evolutionary history of genes and their products, proteins. While there exist no remains of primitive proteins, extant protein information can be used to estimate a protein family’s history. This approach is well suited to structural information. Phylogenetic trees built using the structural content of species’ proteomes have been shown to produce more reliable topologies than trees constructed using their protein sequences [3]. These observations support the use of structure as a fundamental molecular unit when studying the evolution of proteins. They suggest that any conversation on the evolution of proteins must first understand the major driving forces behind such changes from a structural perspective
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.