Abstract
An abundance of features in the light field has been demonstrated to be useful for saliency detection in complex scenes. However, bottom-up saliency detection models are limited in their ability to explore light field features. In this paper, we propose a light field saliency detection method that focuses on depth-induced saliency, which can more deeply explore the interactions between different cues. First, we localize a rough saliency region based on the compactness of color and depth. Then, the relationships among depth, focus, and salient objects are carefully investigated, and the focus cue of the focal stack is used to highlight the foreground objects. Meanwhile, the depth cue is utilized to refine the coarse salient objects. Furthermore, considering the consistency of color smoothing and depth space, an optimization model referred to as color and depth-induced cellular automata is improved to increase the accuracy of saliency maps. Finally, to avoid interference of redundant information, the mean absolute error is chosen as the indicator of the filter to obtain the best results. The experimental results on three public light field datasets show that the proposed method performs favorably against the state-of-the-art conventional light field saliency detection approaches and even light field saliency detection approaches based on deep learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.