Abstract

Terms such as "fluorous affinity" and "fluorophilicity" have been used to describe the unique partition and sorption properties often exhibited by highly fluorinated organic compounds, that is molecules rich in sp(3) carbon-fluorine bonds. In this work, we made use of a highly fluorinated stationary phase and a series of benzene derivatives to study the effect of one single perfluorinated carbon on the chromatographic behavior and adsorption properties of molecules. For this purpose, the adsorption equilibria of α,α,α-trifluorotoluene, toluene, and other alkylbenzenes have been studied by means of nonlinear chromatography in a variety of acetonitrile/water eluents. Our results reveal that one single perfluorinated carbon is already enough to induce a drastic change in the adsorption properties of molecules on the perfluorinated stationary phase. In particular, it has been found that adsorption is monolayer if the perfluoroalkyl carbon is present but that, when this unit is missing, molecules arrange as multilayer stack structures. These findings can contribute to the understanding of molecular mechanisms of fluorous affinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.