Abstract

Ectomycorrhizal fungi (EMF) form symbiotic relationship with the roots of host plants. EMF communities are composed of highly diverse species; however, how they are assembled has been a long-standing question. In this study, we investigated from a phylogenetic perspective how EMF communities assemble on Pinus densiflora seedlings at different spatial scales (i.e., seedling scale and root tip scale). P. densiflora seedlings were collected from different habitats (i.e., disturbed areas and mature forests), and their EMF communities were investigated by morphotype sequencing and next-generation sequencing (NGS). To infer assembly mechanisms, phylogenetic relatedness within the community (i.e., phylogenetic structure) was estimated and spatial distribution of EMF root tips was analyzed. The EMF communities on pine seedlings were largely different between the two habitats. Phylogenetically restricted lineages (Amphinema, /suillus-rhizopogon) were abundant in the disturbed areas, whereas species from diverse lineages were abundant in the mature forests (Russula, Sebacina, /tomentella-thelephora, etc.). In the disturbed areas, phylogenetically similar EMF species were aggregated at the seedling scale, suggesting that disturbance acts as a powerful abiotic filter. However, phylogenetically similar species were spatially segregated from each other at the root tip scale, indicating limiting similarity. In the mature forest seedlings, no distinct phylogenetic signals were detected at both seedling and root tip scale. Collectively, our results suggest that limiting similarity may be an important assembly mechanism at the root tip scale and that assembly mechanisms can vary across habitats and spatial scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.