Abstract
Proton diffusion (PD) across biological membranes is a fundamental process in many biological systems, and much experimental and theoretical effort has been employed for deciphering it. Here, we report on a spectroscopic probe, which can be tightly tethered to the membrane, for following fast (nanosecond) proton transfer events on the surface of membranes. Our probe is composed of a photoacid that serves as our light-induced proton source for the initiation of the PD process. We use our probe to follow PD, and its pH dependence, on the surface of lipid vesicles composed of a zwitterionic headgroup, a negative headgroup, a headgroup that is composed only from the negative phosphate group, or a positive headgroup without the phosphate group. We reveal that the PD kinetic parameters are highly sensitive to the nature of the lipid headgroup, ranging from a fast lateral diffusion at some membranes to the escape of protons from surface to bulk (and vice versa) at others. By referring to existing theoretical models for membrane PD, we found that while some of our results confirm the quasi-equilibrium model, other results are in line with the nonequilibrium model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.