Abstract
As ChatGPT emerges as a potential ally in healthcare decision-making, it is imperative to investigate how users leverage and perceive it. The repurposing of technology is innovative but brings risks, especially since AI's effectiveness depends on the data it's fed. In healthcare, ChatGPT might provide sound advice based on current medical knowledge, which could turn into misinformation if its data sources later include erroneous information. Our study assesses user perceptions of ChatGPT, particularly of those who used ChatGPT for healthcare-related queries. By examining factors such as competence, reliability, transparency, trustworthiness, security, and persuasiveness of ChatGPT, the research aimed to understand how users rely on ChatGPT for health-related decision-making. A web-based survey was distributed to U.S. adults using ChatGPT at least once a month. Bayesian Linear Regression was used to understand how much ChatGPT aids in informed decision-making. This analysis was conducted on subsets of respondents, both those who used ChatGPT for healthcare decisions and those who did not. Qualitative data from open-ended questions were analyzed using content analysis, with thematic coding to extract public opinions on urban environmental policies. Six hundred and seven individuals responded to the survey. Respondents were distributed across 306 US cities of which 20 participants were from rural cities. Of all the respondents, 44 used ChatGPT for health-related queries and decision-making. In the healthcare context, the most effective model highlights 'Competent + Trustworthy + ChatGPT for healthcare queries', underscoring the critical importance of perceived competence and trustworthiness specifically in the realm of healthcare applications of ChatGPT. On the other hand, the non-healthcare context reveals a broader spectrum of influential factors in its best model, which includes 'Trustworthy + Secure + Benefits outweigh risks + Satisfaction + Willing to take decisions + Intent to use + Persuasive'. In conclusion our study findings suggest a clear demarcation in user expectations and requirements from AI systems based on the context of their use. We advocate for a balanced approach where technological advancement and user readiness are harmonized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.