Abstract

Climate change poses a significant threat to the poultry industry, especially in hot climates that adversely affect chicken growth, development, and productivity through heat stress. This literature review evaluates the evolutionary background of chickens with the specific genetic characteristics that can help chickens to cope with hot conditions. Both natural selection and human interventions have influenced the genetic characteristics of the breeds used in the current poultry production system. The domestication of chickens from the Red junglefowl (Gallus gallus) has resulted in the development of various breeds with distinct genetic differences. Over the past few years, deliberate breeding for desirable traits (such as meat production and egg quality) in chickens has resulted in the emergence of various economically valuable breeds. However, this selective breeding has also caused a decrease in the genetic diversity of chickens, making them more susceptible to environmental stressors like heat stress. Consequently, the chicken breeds currently in use may possess a limited ability to adapt to challenging conditions, such as extreme heat. This review focuses on evaluating potential genes and pathways responsible for heat tolerance, including heat shock response, antioxidant defense systems, immune function, and cellular homeostasis. This article will also discuss the physiological and behavioral responses of chicken varieties that exhibit genetic resistance to heat, such as the naked neck and dwarf traits in different indigenous chickens. This article intends to review the current genomic findings related to heat tolerance in chickens that used methods such as the genome-wide association study (GWAS) and quantitative trait loci (QTL) mapping, offering valuable insights for the sustainability of poultry in the face of global warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.