Abstract

Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of ≲109 g PBHs can be used to explore and obtain important hints about the formation mechanisms of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call