Abstract
Glaucoma, a complex and multifactorial neurodegenerative disorder, is a leading cause of irreversible blindness worldwide. Despite significant advancements in our understanding of its pathogenesis and management, early diagnosis and effective treatment of glaucoma remain major clinical challenges. Epigenetic modifications, encompassing deoxyribonucleic acid (DNA) methylation, histone modifications, and non-coding RNAs, have emerged as critical regulators of gene expression and cellular processes. The aim of this comprehensive review focuses on the emerging field of epigenetics and its role in understanding the complex genetic and molecular mechanisms underlying glaucoma. The review will provide an overview of the pathophysiology of glaucoma, emphasizing the intricacies of intraocular pressure regulation, retinal ganglion cell dysfunction, and optic nerve damage. It explores how epigenetic modifications, such as DNA methylation and histone modifications, can influence gene expression, and how these mechanisms are implicated in glaucomatous neurodegeneration and contribute to glaucoma pathogenesis. The manuscript discusses evidence from both animal models and human studies, providing insights into the epigenetic alterations associated with glaucoma onset and progression. Additionally, it discusses the potential of using epigenetic modifications as diagnostic biomarkers and therapeutic targets for more personalized and targeted glaucoma treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.