Abstract

Endophytic microorganisms represent promising solutions to environmental challenges inherent in conventional agricultural practices. This study concentrates on the identification of endophytic bacteria isolated from the root, stem, and leaf tissues of four Artemisia plant species. Sixty-one strains were isolated and sequenced by 16S rDNA. Sequencing revealed diverse genera among the isolated bacteria from different Artemisia species, including Bacillus, Pseudomonas, Enterobacter, and Lysinibacillus. AR11 and VR24 obtained from the roots of A. absinthium and A. vulgaris demonstrated significant inhibition on Fusarium c.f. oxysporum mycelial growth. In addition, AR11, AR32, and CR25 exhibited significant activity in phosphatase solubilization, nitrogen fixation, and indole production, highlighting their potential to facilitate plant growth. A comparative analysis of Artemisia species showed that root isolates from A. absinthium, A. campestris, and A. vulgaris have beneficial properties for inhibiting pathogen growth and enhancing plant growth. AR11 with 100% similarity to Bacillus thuringiensis, could be considered a promising candidate for further investigation as microbial biofertilizers. This finding highlights their potential as environmentally friendly alternatives to chemical pesticides, thereby contributing to sustainable crop protection practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.