Abstract

Pseudomonas taetrolens constitutes an efficient platform for the biosynthesis of lactobionic acid, a potentially prebiotic compound. Unfortunately, an amensalistic interaction has been demonstrated between P. taetrolens and probiotic lactic acid bacteria (LAB), characterized by the competitive exclusion of P. taetrolens, hindering the in situ production of fermented dairy products with synbiotic properties. In the present research, encapsulation was explored as a barrier to the diffusion of the antimicrobial metabolites generated by LAB. Mixed fermentations involving P. taetrolens LMG 2336 and Lactobacillus casei CECT 475 were cultivated, entrapping both microorganisms alternately. Alginate, alginate/starch and carboxymethyl cellulose/k-carrageenan were tested as encapsulating agents. The immobilization of L. casei in 2% alginate/2% starch beads was found to be the best strategy, improving the production of lactobionic acid by 182% with respect to co-cultures with free cells. This study proves the potential of LAB encapsulation for the protection of sensitive strains in mixed food fermentations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.