Abstract

Atom-by-atom assembly of functional materials and devices is perceived as one of the ultimate targets of nanotechnology. Recently it has been shown that the beam of a scanning transmission electron microscope can be used for targeted manipulation of individual atoms. However, the process is highly dynamic in nature rendering control difficult. One possible solution is to instead train artificial agents to perform the atomic manipulation in an automated manner without need for human intervention. As a first step to realizing this goal, we explore how artificial agents can be trained for atomic manipulation in a simplified molecular dynamics environment of graphene with Si dopants, using reinforcement learning. We find that it is possible to engineer the reward function of the agent in such a way as to encourage formation of local clusters of dopants under different constraints. This study shows the potential for reinforcement learning in nanoscale fabrication, and crucially, that the dynamics learned by agents encode specific elements of important physics that can be learned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.