Abstract

Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn’t. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call