Abstract
E-Learning systems have proven to be fundamental in several areas of tertiary education and in business companies. There are many significant advantages for people who learn online such as convenience, portability, flexibility and costs. However, the remarkable velocity and volatility of modern knowledge due to the exponential growth of the World Wide Web, requires novel learning methods that offer additional features such as information structuring, efficiency, task relevance and personalization. This paper proposes a novel multi-agent e-Learning system empowered with (ontological) knowledge representation and memetic computing to efficiently manage complex and unstructured information that characterize e-Learning. In particular, differing from other similar approaches, our proposal uses (1) ontologies to provide a suitable method for modeling knowledge about learning content and activities, and (2) memetic agents as intelligent explorers in order to create ?in time? and personalized e-Learning experiences that satisfy learners' specific preferences. The proposed method has been tested by realizing a multi-agent software plug-in for an industrial e-Learning platform with experimentations to validate our memetic proposal in terms of flexibility, efficiency and interoperability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.