Abstract

In many cases, it is time-consuming for researchers to find proper collaborators who can provide researching guidance besides simply collaborating. The Most Beneficial Collaborators (MBCs), who have high academic level and relevant research topics, can genuinely help researchers to enrich their research. However, how can we find the MBCs? In this paper, we propose a most Beneficial Collaborator Recommendation model called BCR. BCR learns on researchers’ publications and associates three academic features: topic distribution of research interest, interest variation with time and researchers’ impact in collaborators network. We run a topic model on researchers’ publications in each year for topic clustering. The generated topic distribution matrix is fixed by a time function to fit the interest dynamic transformation. The academic social impact is also considered to mine the most prolific researchers. Finally, a TopN MBCs recommendation list is generated according to the computed score. Extensive experiments on a dataset with citation network demonstrate that, in comparison to relevant baseline approaches, our BCR performs better in terms of precision, recall, F1 score and the recommendation quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.