Abstract
In this work, we study the realization of non-invertible duality symmetries along the toroidal branch of the c = 2 conformal manifold. A systematic procedure to construct symmetry defects is implemented to show that all Rational Conformal Field Theories along this branch enjoy duality symmetries. Furthermore, we delve into an in-depth analysis of two representative cases of multicritical theories, where the toroidal branch meets various orbifold branches. For these particular examples, the categorical data and the defect Hilbert spaces associated with the duality symmetries are obtained by resorting to modular covariance. Finally, we study the interplay between these novel symmetries and the various exactly marginal and relevant deformations, including some representative examples of Renormalization Group flows where the infrared is constrained by the non-invertible symmetries and their anomalies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.