Abstract

Thermal digestion has emerged as a novel technique for the rapid treatment of solid organic waste (SOW). Dehydration mechanism and fate of nutrients during the thermal digestion of the SOW were explored. A series of experiments were carried out in a specially designed laboratory-scale dehydrator to determine its drying kinetics. The statistical analysis revealed that the diffusion model predicted the dehydration profile most accurately than other models. The effective moisture diffusivity coefficient depended on the temperature and varied from 2.81 × 10-08 m2/s to 8.68 × 10-08 m2/s at the tested temperature range. The activation energy required for complete dehydration was found to be 26.56 kJ/mol. The artificial neural network (ANN) model was found highly efficient (R2 - 0.983) in predicting the total drying time required for attaining equilibrium moisture content. The total N decreased from 2.2% to 1.81% due to evaporation of ammonical nitrogen, while the availability of P and K was increased from 0.38% to 0.43% and 1.47% to 1.75%, respectively when the temperature was increased from 110 °C to 170 °C. The thermal dehydration technique was found effective in digesting the organics and improving the bioavailability of the nutrients, which favours for its re-utilization in agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call