Abstract
Fur color in domestic goats is an important, genetically determined characteristic that is associated with economic value. This study was designed to perform a comprehensive expression profiling of genes expressed in the skin tissues from Laiwu Black goat and Lubei White goat. Comparisons of black and white goat skin transcriptomes revealed 102 differentially expressed genes (DEGs), of which 38 were upregulated and 64 downregulated in black skin compared with white skin. Among the DEGs, we identified six genes involved in pigmentation, including agouti signaling protein (ASIP), CAMP responsive element binding protein 3-like 1 (CREB3L1), dopachrome tautomerase (DCT), premelanosome protein (PMEL), transient receptor potential cation channel subfamily M member 1 (TRPM1), and tyrosinase-related protein 1 (TYRP1). Notably, there were no significant differences in the expression of melanocortin 1 receptor, microphthalmia-associated transcription factor, tyrosinase, and KIT proto-oncogene receptor tyrosine kinase between the black and white skin samples, whereas ASIP expression was detected only in white skin. PMEL, TRPM1, TYRP1, and DCT showed higher expression in black goat skin, but ASIP and CREB3L1 had higher expression in white goat skin. Quantitative polymerase chain reaction results for PMEL, TRPM1, DCT, TYRP1, and CREB3L1 expression were consistent with those for RNA-seq. These results will expand our understanding of the complex molecular mechanisms of skin physiology and melanogenesis in goats, and provide a foundation for future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.