Abstract

In the current paper, we have developed two bio-inspired fuzzy clustering algorithms by incorporating the optimization techniques, namely differential evolution and particle swarm optimization. Both these clustering techniques can detect symmetrical-shaped clusters utilizing the established point symmetry-based distance measure. Both the proposed approaches are automatic in nature and can detect the number of clusters automatically from a given dataset. A symmetry-based cluster validity measure, F-Sym-index, is used as the objective function to be optimized in order to automatically determine the correct partitioning by both the approaches. The effectiveness of the proposed approaches is shown for automatically clustering some artificial and real-life datasets as well as for clustering some real-life gene expression datasets. The current paper presents a comparative analysis of some meta-heuristic-based clustering approaches, namely newly proposed two techniques and the already existing automatic genetic clustering techniques, VGAPS, GCUK, HNGA. The obtained results are compared with respect to some external cluster validity indices. Moreover, some statistical significance tests, as well as biological significance tests, are also conducted. Finally, results on gene expression datasets have been visualized by using some visualization tools, namely Eisen plot and cluster profile plot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call