Abstract

We present a finite-size scaling analysis of the droplet condensation-evaporation transition of a lattice gas (in two and three dimensions) and a Lennard-Jones gas (in three dimensions) at fixed density. Parallel multicanonical simulations allow sampling of the required system sizes with precise equilibrium estimates. In the limit of large systems, we verify the theoretical leading-order scaling prediction for both the transition temperature and the finite-size rounding. In addition, we present an emerging intermediate scaling regime, consistent in all considered cases and with similar recent observations for polymer aggregation. While the intermediate regime locally may show a different effective scaling, we show that it is a gradual crossover to the large-system scaling behavior by including empirical higher-order corrections. This implies that care has to be taken when considering scaling ranges, possibly leading to completely wrong predictions for the thermodynamic limit. In this study, we consider a crossing of the phase boundary orthogonal to the usual fixed temperature studies. We show that this is an equivalent approach and, under certain conditions, may show smaller finite-size corrections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.