Abstract

Non-invasive “hot spot imaging” and localization of necrotic tissue may be helpful for definitive diagnosis of myocardial viability, which is essential for clinical management of ischemic heart disease. We labeled Sennidin A (SA), a naturally occurring median dianthrone compound, with 131I and evaluated 131I SA as a potential necrosis-avid diagnostic tracer agent in rat model of reperfused myocardial infarction. Magnetic resonance imaging (MRI) was performed to determine the location and dimension of infarction. 131I-SA was evaluated in rat model of 24-hour old reperfused myocardial infarction using single-photon emission computed tomography/computed tomography (SPECT/CT), biodistribution, triphenyltetrazolium chloride (TTC) histochemical staining, serial sectional autoradiography and microscopy. Gamma counting revealed high uptake and prolonged retention of 131I SA in necrotic myocardium and fast clearance from non-targeted tissues. On SPECT/CT images, myocardial infarction was persistently visualized as well-defined hotspots over 24h, which was confirmed by perfect matches of images from post-mortem TTC staining and autoradiography. Radioactivity concentration in infarcted myocardium was over 9 times higher than that of the normal myocardium at 24h. With favorable hydrophilicity and stability, radioiodinated SA may serve as a necrosis-avid diagnostic agent for assessment of myocardial viability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.