Abstract

Di (2-ethylhexyl) phthalate (DEHP), a toxic phthalate ester (PAE) plasticizer, is often detected in marine sediment and biota. Our understanding of DEHP-degrading marine bacteria and the associated genetic mechanisms is limited. This study established a synthetic bacterial consortium (A02) consisting of three marine bacteria (OR05, OR16, and OR21). Consortium A02 outperformed the individual strains in DEHP degradation. Investigations into the degradation of DEHP intermediates revealed that OR05 and OR16 likely contributed to enhanced DEHP degradation by Consortium A02 via the utilization of DEHP intermediates, such as protocatechuic acid and mono (ethylhexyl) phthalate, with OR21 as the key DEHP degrader. A pathway of DEHP degradation by Consortium A02 was predicted based on genome analysis and experimental degradation. Bioaugmentation with Consortium A02 led to 80% DEHP degradation in 26 days in saline sediment (100 mg/kg), surpassing the 53% degradation by indigenous microbes, indicating the potential of A02 for treating DEHP-contaminated sediments. Meanwhile, bioaugmentation notably changed the bacterial community, with the exclusive presence of certain bacterial genera in the A02 bioaugmented microcosms, and was predicted to result in a more dynamic and active sediment bacterial community. This study contributes to the limited literature on DEHP degradation by marine bacteria and their associated genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call