Abstract
The knowledge contained in academic literature is interesting to mine. Inspired by the idea of molecular markers tracing in the field of biochemistry, three named entities, namely, methods, datasets, and metrics, are extracted and used as artificial intelligence (AI) markers for AI literature. These entities can be used to trace the research process described in the bodies of papers, which opens up new perspectives for seeking and mining more valuable academic information. Firstly, the named entity recognition model is used to extract AI markers from large-scale AI literature. A multi-stage self-paced learning strategy (MSPL) is proposed to address the negative influence of hard and noisy samples on the model training. Secondly, original papers are traced for AI markers. Statistical and propagation analyses are performed based on the tracing results. Finally, the co-occurrences of AI markers are used to achieve clustering. The evolution within method clusters is explored. The above-mentioned mining based on AI markers yields many significant findings. For example, the propagation rate of the datasets gradually increases. The methods proposed by China in recent years have an increasing influence on other countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.