Abstract

Land cover maps are a vital input variable in all types of environmental research and management. However the modern state-of-the-art machine learning techniques used to create them require substantial training data to produce optimal accuracy. Domain Adaptation is one technique researchers might use when labelled training data are unavailable or scarce. This paper looks at the result of training a convolutional neural network model on a region where data are available (source domain), and then adapting this model to another region (target domain) by retraining it on the available labelled data, and in particular how these results change with increasing data availability. Our experiments performing domain adaptation on satellite image time series, draw three interesting conclusions: (1) a model trained only on data from the source domain delivers 73.0% test accuracy on the target domain; (2) when all of the weights are retrained on the target data, over 16,000 instances were required to improve upon the accuracy of the source-only model; and (3) even if sufficient data is available in the target domain, using a model pretrained on a source domain will result in better overall test accuracy compared to a model trained on target domain data only—88.9% versus 84.7%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.