Abstract

In this study, we systematically investigate collider constraints on effective interactions between Dark Matter (DM) particles and electroweak gauge bosons. We consider the simplified models in which scalar or Dirac fermion DM candidates couple only to electroweak gauge bosons through high dimensional effective operators. Considering the induced DM-quarks and DM-gluons operators from the Renormalization Group Evolution (RGE) running effect, we present comprehensive constraints on the effective energy scale Λ and Wilson coefficients from direct detection, indirect detection, and collider searches. In particular, we present the corresponding sensitivity from the Large Hadron Electron Collider (LHeC) and Future Circular Collider in the electron-proton mode (FCC-ep) for the first time, update the mono-j and mono-γ search limits at the Large Hadron Collider (LHC), and derive the new limits at the Circular Electron Positron Collider (CEPC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call