Abstract
PurposeWith the fierce competition in the cold chain logistics market, achieving and maintaining excellent customer satisfaction is the key to an enterprise's ability to stand out. This research aims to determine the factors that affect customer satisfaction in cold chain logistics, which helps cold chain logistics enterprises identify the main aspects of the problem. Further, the suggestions are provided for cold chain logistics enterprises to improve customer satisfaction.Design/methodology/approachThis research uses the text mining approach, including topic modeling and sentiment analysis, to analyze the information implicit in customer-generated reviews. First, latent Dirichlet allocation (LDA) model is used to identify the topics that customers focus on. Furthermore, to explore the sentiment polarity of different topics, bi-directional long short-term memory (Bi-LSTM), a type of deep learning model, is adopted to quantify the sentiment score. Last, regression analysis is performed to identify the significant factors that affect positive, neutral and negative sentiment.FindingsThe results show that eight topics that customer focus are determined, namely, speed, price, cold chain transportation, package, quality, error handling, service staff and logistics information. Among them, speed, price, transportation and product quality significantly affect customer positive sentiment, and error handling and service staff are significant factors affecting customer neutral and negative sentiment, respectively.Research limitations/implicationsThe data of the customer-generated reviews in this research are in Chinese. In the future, multi-lingual research can be conducted to obtain more comprehensive insights.Originality/valuePrior studies on customer satisfaction in cold chain logistics predominantly used questionnaire method, and the disadvantage of which is that interviewees may fill out the questionnaire arbitrarily, which leads to inaccurate data. For this reason, it is more scientific to discover customer satisfaction from real behavioral data. In response, customer-generated reviews that reflect true emotions are used as the data source for this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.