Abstract

In this work, crystalline structural variations of cellulose during pulp beating of tobacco stems were characterized through X-ray diffraction (XRD) and FT-IR spectroscopy. The results showed that the correlation between the cellulose crystallinity index and the degree of beating was not a linear but an initially upward and then downward trend followed by a repeating fluctuation as a result of the beating action on amorphous regions first and then on crystalline cellulose. It was proposed that the whole beating process might be presumably divided into two phases in the case of the evolution of the crystallinity index. The crystallite sizes of 101 and 101¯ lattice planes showed an obvious fluctuation during the beating while the crystallite sizes and d-spacings from representative 002 lattice planes exhibited little change. Complementally, FT-IR characterization of cellulose structural properties further proved that the crystallinity index was highly affected by mechanical beating and the intact beating process might be divided into two stages characteristic of a first ascending and then descending tendency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.