Abstract

In this study, several derivatives of tetraphenylporphyrin were synthesized, each with unique meso-substituent groups including phenyl, methoxyphenyl, butyloxyphenyl, octyloxyphenyl, and dectyloxyphenyl. Additionally, their corresponding copper complexes were prepared and thoroughly characterized. The structural confirmation of all compounds was established through CHN elemental analysis, mass spectrometry, and FT-IR spectroscopy. As the number of carbon atoms in the alkyl long-chain increased, a slight red shift in the electronic absorption band was observed, which was attributed to the electronic influence of the alkyl group. DFT analysis indicated that electron density predominantly localized on the porphyrin ring of both the metal free porphyrins and copper (II) porphyrin complexes, with relatively low electron density in the p orbital of the meso-aryl long-chain substituent group. EPR spectroscopy of the Copper (II) ion complexes revealed signals, indicating their paramagnetic properties. Additionally, the Copper (II) tetraphenylporphyrin (CuTPP) complexes displayed two reversible oxidation peaks at +0.97 V and +1.35 V, whereas other derivatives exhibited lower oxidation potentials. The cytotoxicity of these compounds against MCF-7 cell lines was assessed using MTT assay, revealing cytotoxic effects in all cases. Among them, Copper (II) tetrakis (4-methyloxyphenyl)porphyrin (CuTOMPP) demonstrated the highest potential, with an IC50 value of 32.07 μg/mL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.